Skip to main content Skip to secondary navigation
Main content start
kay giesecke

Kay Giesecke is Professor of Management Science & Engineering at Stanford University.

He is the Founder and Director of Stanford's Advanced Financial Technologies Laboratory, the Director of the Mathematical and Computational Finance Program and a member of the Institute for Computational and Mathematical Engineering. He has been on the Stanford faculty since 2005, and has held visiting positions at Cornell, UCLA, and the International Monetary Fund. He serves on the Governing Board and Scientific Advisory Board of the Consortium for Data Analytics in Risk and the Council of the Bachelier Finance Society. He is the founder and organizer of Stanford’s annual AI in Fintech Forum. Kay is Editor of Management Science (Finance Area) and Associate Editor for Operations ResearchMathematical FinanceJournal of Financial Econometrics, SIAM Journal on Financial Mathematics and several other leading journals. 

Kay is a financial technologist whose research agenda is driven by significant applied problems in areas such as investment management, risk analytics, lending, and regulation, where data streams are increasingly large-scale and dynamical, and where computational demands are critical. He develops and analyzes machine learning and other stochastic methods to make explainable data-driven decisions in these and other areas. He also designs efficient numerical algorithms to address the computational problems arising in this context. Kay's research results support, for example, transparent investment, trading, and lending decisions, measuring and controlling risk, surveilling financial markets, and assessing the impact of climate change on markets and institutions.

In 2020 Kay founded Infima Technologies, a venture-backed SaaS company offering transformative AI solutions to fixed-income market participants. Initially serving as Infima's CEO, he transitioned to the role of Chief Scientist after returning to Stanford. As Chairman of the Board, he orchestrated the company's acquisition in 2024.

Kay has published more than 50 research articles in leading academic journals. He has co-authored several US patents, some of which underpin commercial investment analytics systems widely used in the financial industry. Kay’s research has won several prizes including the JP Morgan AI Faculty Research Award (2019), the SIAM Financial Mathematics and Engineering Conference Paper Prize (2014), the Fama/DFA Prize for the Best Asset Pricing Paper in the Journal of Financial Economics, and the Gauss Prize of the Society for Actuarial and Financial Mathematics of Germany (2003). His research is supported by the National Science Foundation and several leading financial institutions.

Kay has supervised 24 doctoral dissertations, with graduates accepting faculty positions at Wharton, UC Berkeley, Oxford, NYU and other leading research universities or taking leadership positions at firms such as Goldman Sachs, JP Morgan, Google, and Morgan Stanley.

Kay is an award-winner teacher who has developed innovative new courses at the intersection of finance and technology. He is the Faculty Lead for Financial Analytics MS track. He has created and led several successful executive education programs that have attracted industry leaders from across the world. 

Kay advises several venture-backed technology startups and has been a consultant or advisor to banks, investment managers, software companies, governmental agencies, and supranational organizations.

Kay received his doctorate in 2001 from Humboldt Universität zu Berlin where he was a fellow of the Deutsche Forschungsgemeinschaft.